Hormone-induced aberrations in electromagnetic adhesion signaling as a developmental

squeegee

Banned
Reaction score
132
[SIZE=+1]Hormone-induced aberrations in electromagnetic adhesion signaling as a developmental factor of androgenetic alopecia.

Matilainen VA, Keinanen-Kiukaanniemi SM.


Department of Public Health Science and General Practice, University of Oulu, Finland.

In androgenetic alopecia, overactivation of the androgen hormone cascade in genetically predisposed persons leads to miniaturization of the dermal papilla of the hair follicle and to reduction in the number of papilla cells in the scalp, but the mechanisms explaining this miniaturization have remained unclear. According to our hypothesis, the increase of dihydrotestosterone (DHT) production in the overactive androgen state inhibits cell mitosis in the dermal papilla and contributes to the induction of programmed cell death (apoptosis). Normally, DNA molecules have a negative charge, which doubles in every cell mitosis. In the catagen and telogen phases, the sulphur-rich hair moves upwards, dehydrates and develops an increasing positive charge. In a normal hair-growth cycle, the epithelial column shortens and the secondary germ is formed and it invaginates the dermal papilla by electromagnetic attraction. In the mitotic inhibition state induced by DHT, the negative charge decreases, leading to a weakening of the electromagnetic adhesion forces and weaker electrical attraction between the undifferentiated germ cells and the dermal papilla. Insulin resistance has an additional pathogenic role in the excessive miniaturization of the hair follicle. The vasoactive substances associated with endothelial dysfunction in insulin resistance induce microcirculatory disturbance, perifollicular vasoconstriction and stimulation of smooth muscle cell proliferation in the vascular wall. This leads to microvascular insufficiency and local tissue hypoxia and progressive miniaturization of hair follicles.[/SIZE]
 
Top