Functional Complexity Of Hair Follicle Stem Cell Niche And Therapeutic Targeting Niche Dysfunction

alscarmuzza

Established Member
Reaction score
127
Abstract
Stem cell activity is subject to non-cell-autonomous regulation from the local microenvironment, or niche. In adaption to varying physiological conditions and the ever-changing external environment, the stem cell niche has evolved with multifunctionality that enables stem cells to detect these changes and to communicate with remote cells/tissues to tailor their activity for organismal needs. The cyclic growth of hair follicles is powered by hair follicle stem cells (HFSCs). Using HFSCs as a model, we categorize niche cells into 3 functional modules, including signaling, sensing and message-relaying. Signaling modules, such as dermal papilla cells, immune cells and adipocytes, regulate HFSC activity through short-range cell-cell contact or paracrine effects. Macrophages capacitate the HFSC niche to sense tissue injury and mechanical cues and adipocytes seem to modulate HFSC activity in response to systemic nutritional states. Sympathetic nerves implement the message-relaying function by transmitting external light signals through an ipRGC-SCN-sympathetic circuit to facilitate hair regeneration. Hair growth can be disrupted by niche pathology, e.g. dysfunction of dermal papilla cells in androgenetic alopecia and influx of auto-reacting T cells in alopecia areata and lichen planopilaris. Understanding the functions and pathological changes of the HFSC niche can provide new insight for the treatment of hair loss.

Full Text Here: https://jbiomedsci.biomedcentral.com/articles/10.1186/s12929-020-0624-8

Most interesting part (IMO):
12929_2020_624_Fig4_HTML.png

Sympathetic nerves relay external light signals to HFSCs. Sympathetic nerves are a gateway for the communication between internal HFSC niche and external environment. Intense light irradiation to eyes promotes HFSC activation through an ipRGC-SCN-sympathetic nervous circuit. Increased norepinephrine release from cutaneous sympathetic nerves facilitates HFSC activation by upregulating hedgehog signaling
 

Poppyburner

Established Member
My Regimen
Reaction score
95
Fascinating.

lightbox.jpg


'Injury to HFs by hair plucking is also a potent stimulation to HFSCs.'
 
Top