the stuff in the follica patent..............

michael barry

Senior Member
Reaction score
12
I wanna park this here for future reference.....




In yet another particular embodiment of the methods, kits, and compositions of the invention, the EGFR inhibitor (e.g., a small molecule EGFR inhibitor or EGFR antibody) is combined (e.g., administered, formulated, or contained in a kit) with an additional biologically active agent selected from an antihistamine (e.g., mepyramine, diphenhydramine, and antazoline), an anti-inflammatory (e.g., corticosteroids, NTHEs, and COX-2 inhibitors), a retinoid (e.g., 13-cis-retinoic acid, adapalene, all-trans-retinoic acid, and etretinate), an anti-androgen (e.g., finasteride, flutamide, diazoxide, l lalpha-hydroxyprogesterone, ketoconazole, RU58841, dutasteride, fluridil, and QLT-7704), an immunosuppressant (e.g., cyclosporine, tacrolimus, rapamycin, everolimus, and pimecrolimus), a channel opener (e.g., minoxidil, diazoxide, and phenytoin), an antibiotic, and an antimicrobial (e.g., benzyl benzoate, benzalkonium chloride, benzoic acid, benzyl alcohol, butylparaben, ethylparaben, methylparaben, propylparaben, camphorated metacresol, camphorated phenol, hexylresorcinol, methylbenzethonium chloride, cetrimide, chlorhexidine, chlorobutanol, chlorocresol, cresol, glycerin, imidurea, phenol, phenoxyethanol, phenylethylalcohol, phenylmercuric acetate, phenylmercuric borate, phenylmercuric nitrate, potassium sorbate, sodium benzoate, sodium proprionate, sorbic acid, and thiomersal).

In a particular embodiment of the methods, kits, and compositions of the invention, the EGFR inhibitor is administered, formulated, or is part of a kit with an anti-androgen (e.g., finasteride ) and a channel opener (e.g., minoxidil).
 

michael barry

Senior Member
Reaction score
12
Sticking this here (immunosuppression verbiage in follica patent):


Imm unosuppressants

In certain embodiments, a nonsteroidal immunosuppressant can be used in the compositions, methods, and kits of the invention. Suitable immunosuppressants include cyclosporine, tacrolimus, rapamycin, everolimus, and pimecrolimus.

Cyclosporines

The cyclosporines are fungal metabolites that comprise a class of cyclic oligopeptides that act as immunosuppressants. Cyclosporine A is a hydrophobic cyclic polypeptide consisting of eleven amino acids. It binds and forms a complex with the intracellular receptor cyclophilin. The cyclosporine/cyclophilin complex binds to and inhibits calcineurin, a Ca2+- calmodulin-dependent serine-threonine-specif?c protein phosphatase. Calcineurin mediates signal transduction events required for T-cell activation (reviewed in Schreiber et al., Cell 70:365-368, 1991). Cyclosporines and their functional and structural analogs suppress the T cell-dependent immune response by inhibiting antigen-triggered signal transduction. This inhibition decreases the expression of proinflammatory cytokines, such as IL-2. Many different cyclosporines (e.g., cyclosporine A, B, C, D, E, F, G, H, and I) are produced by fungi. Cyclosporine A is a commercially available under the trade name NEORAL from Novartis. Cyclosporine A structural and functional analogs include cyclosporines having one or more fluorinated amino acids (described, e.g., in U.S. Patent No. 5,227,467); cyclosporines having

modified amino acids (described, e.g., in U.S. Patent Nos. 5,122,511 and 4,798,823); and deuterated cyclosporines, such as ISAtx247 (described in U.S. Patent Application Publication No. 2002/0132763 Al). Additional cyclosporine analogs are described in U.S. Patent Nos. 6,136,357, 4,384,996, 5,284,826, and 5,709,797. Cyclosporine analogs include, but are not limited to, D-Sar (?-SMe)3 Val2-DH-Cs (209-825), Allo-Thr-2-Cs, Norvaline-2-Cs, D- Ala(3-acetylamino)-8-Cs, Thr-2-Cs, and D-MeSer-3-Cs, D-SeI-(O-CH2CH2- OH)-8-Cs, and D-Ser-8-Cs, which are described in Cruz et al., Antimicrob. Agents Chemother. 44: 143 (2000).

Tacrolimus

Tacrolimus and tacrolimus analogs are described by Tanaka et al. (J. Am. Chem. Soc, 109:5031 (1987)) and in U.S. Patent Nos. 4,894,366, 4,929,611, and 4,956,352. FK506-related compounds, including FR-900520, FR-900523, and FR-900525, are described in U.S. Patent No. 5,254,562; O- aryl, O-alkyl, O-alkenyl, and O-alkynylmacrolides are described in U.S. Patent Nos. 5,250,678, 532,248, 5,693,648; amino O-aryl macrolides are described in U.S. Patent No. 5,262,533; alkylidene macrolides are described in U.S. Patent No. 5,284,840; N-heteroaryl, N-alkylheteroaryl, N-alkenylheteroaryl, and N- alkynylheteroaryl macrolides are described in U.S. Patent No. 5,208,241 ; aminomacrolides and derivatives thereof are described in U.S. Patent No. 5,208,228; fluoromacrolides are described in U.S. Patent No. 5,189,042; amino O-alkyl, O-alkenyl, and O-alkynylmacrolides are described in U.S. Patent No. 5,162,334; and halomacrolides are described in U.S. Patent No. 5,143,918. Tacrolimus is extensively metabolized by the mixed-function oxidase system, in particular, by the cytochrome P-450 system. The primary mechanism of metabolism is demethylation and hydroxylation. While various tacrolimus metabolites are likely to exhibit immunosuppressive biological

activity, the 13-demethyl metabolite is reported to have the same activity as tacrolimus.

Pimecrolimns Pimecrolimus is the 33-epi-chloro derivative of the macrolactam ascomyin. Pimecrolimus structural and functional analogs are described in U.S. Patent No. 6,384,073.

Rapamycin Rapamycin structural and functional analogs include mono- and diacylated rapamycin derivatives (U.S. Patent No. 4,316,885); rapamycin water-soluble prodrugs (U.S. Patent No. 4,650,803); carboxylic acid esters (PCT Publication No. WO 92/05179); carbamates (U.S. Patent No. 5,118,678); amide esters (U.S. Patent No. 5,118,678); biotin esters (U.S. Patent No. 5,504,091); fluorinated esters (U.S. Patent No. 5,100,883); acetals (U.S. Patent No. 5,151,413); silyl ethers (U.S. Patent No. 5,120,842); bicyclic derivatives (U.S. Patent No. 5,120,725); rapamycin dimers (U.S. Patent No. 5,120,727); O- aryl, O-alkyl, O-alkyenyl and O-alkynyl derivatives (U.S. Patent No. 5,258,389); and deuterated rapamycin (U.S. Patent No. 6,503,921). Additional rapamycin analogs are described in U.S. Patent Nos. 5,202,332 and 5,169,851.
 
Top